

 Navigation

 	
 index

 	
 next |

 	rxp_player 0.0.1 documentation

Cross Platform Video Player Library

rxp_player is an open source, cross platform C library for playing
back .ogg video files that are encoded with theora and vorbis. In the
near future we will also add support for Daala and Opus.

Contents:

	Getting Started

	Programmers Guide

	API Reference

 Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxp_player 0.0.1 documentation

Getting Started

To compile rxp_player you need to:

	Clone the repository

	Make sure you compiled the dependencies (or use the one we provide)

	Compile the library with the packaged build script

Building the library

Clone the rxp_player repository from github:

git clone git@github.com:roxlu/rxp_player.git

Dependencies

rxp_player depends on the follow libraries

	libogg [http://downloads.xiph.org/releases/ogg/libogg-1.3.1.tar.gz]

	libvorbis [http://downloads.xiph.org/releases/vorbis/libvorbis-1.3.4.tar.gz]

	libtheora [http://downloads.xiph.org/releases/theora/libtheora-1.1.1.zip]

	libuv [http://downloads.xiph.org/releases/theora/libtheora-1.1.1.zip]

Furthermore the example that is part of the library, which implements
a fully working video player needs a couple of other libraries. We provide
precompiled libraries that are tested on Mac/Win/Arch-Linux and will be
automatically downloaded upon first build. These libraries are:

	cubeb [https://github.com/kinetiknz/cubeb]

	glfw [http://www.glfw.org/]

	glxw [https://github.com/rikusalminen/glxw]

	tinylib [https://github.com/roxlu/tinylib]

Compiling rxp_player on Mac and Linux

We provide build scripts for both linux, mac and windows. We’re using
CMake for the build system. By default the CMake file will download the
dependencies and necessary test files the first time you execute the
scripts. To build execute:

cd build
./release.sh

This will automatically download a test video and starts the test
application. It will also build a librxp_player.a file and copies it
to the root install directory for you compiler and operation system.

Compiling on Windows

@TODO

Libraries to link with on Mac

When you want to link with librxpplayer in your application you need
to link with the following frameworks and libraries on mac.

	CoreFoundation

	Cocoa

	OpenGL

	IOKit

	CoreVideo

	AudioUnit

	CoreAudio

	AudioToolbox

 Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxp_player 0.0.1 documentation

Programmers Guide

On this page we will describe everything you need to know to create
a fully working video player with rxp_player with audio and video
output. For the output parts we refer to the glfw example that you can
find in src/examples.

The simplest video player is one that does not have audio output.
Therefore we will start with this first and in the next section we
describe how you can add audio output too. Although the API is similar
for both video with and without audio, for the user there are some
big differences.

A global flow of how to use the player is:

	initialize a player with rxp_player_init()

	open a file using rxp_player_open()

	start playback with rxp_player_play()

	call rxp_player_update() repeatedly in your draw loop.

	release all used memory when you receive the RXP_PLAYER_EVENT_RESET
by calling rxp_player_clear() in you on_event callback.

Before you can use the player you need to initialize the rxp_player
context which manages all memory, video, audio etc.. Call
rxp_player_init() with a pointer to a rxp_player struct. All functions
of the rxp_player library return zero on sucess, < 0 on error, so make
sure to check this.

After you’ve initialized the struct you can open a file by calling
rxp_player_open() and pass the context struct and the filepath
to the .ogg file you want to play.

To start playing call rxp_player_play(). But by only calling
these functions you’re not yet there. You need to tell the rxp_player
that you want to receive video frames. For this we use a callback,
that should accept a pointer to the player and a rxp_packet.

The rxp_packet holds all the information you need to display a
frame. Every time this function is called it means you need to
update your screen with the recevied buffers. The rxp_packet
has a member img[3] that contains the width, height, stride
and video data for each of the video planes. At the time of writing
we only support YUV420P video data.

The function below shows a simple example of this:

// player is `rxp_player player`
static int setup_player() {

 if (rxp_player_init(&player) < 0) {
 printf("+ Error: cannot init player.\n");
 return -1;
 }

 if (rxp_player_open(&player, "bunny.ogg") < 0) {
 printf("+ Error: cannot open the ogg file.\n");
 return -2;
 }

 if (rxp_player_play(&player) < 0) {
 printf("+ Error: failed to start playing.\n");
 return -3;
 }

 player.on_video_frame = on_video_frame;
 player.on_event = on_event;

 return 0;
 }

An important aspect you need to implement is the on_event callback
where you clear all used memory when the player has finished playing
and decoding all frames. The on_event function will be called when
certain player or decoder events happen. These events are:

	RXP_PLAYER_DEC_EVENT_AUDIO_INFO:

	The decoder decoded some audio frames and the
players’ members nchannels and samplerate have been
set.

	RXP_PLAYER_EVENT_PLAY:

	The scheduler/player has opened the file and decoded
the first couple of frames/seconds and the player is
ready to start running. This is when you should start the
audio stream when the .ogg file has audio samples. You
can check this by testing the number of channels, which
should be > 0, when the .ogg file has an audio stream.

	RXP_PLAYER_EVENT_RESET:

	Whenever you receive the RXP_PLAYER_EVENT_RESET event
it’s time to tear down the player and stop the audio
stream if it was running. Call rxp_player_clear() when
you receive this event. This event is fired when either
you asked the player to stop by using rxp_player_stop()
or simply when we’re ready decoding video frames or when
the audio buffer hasn’t got any new samples that can be
played.

The function below shows an example that implements an event handler, which
also start an audio stream using the `cubeb`_ library. Note how we clear
the used memory where we receive the RXP_PLAYER_EVENT_RESET event. When
you don’t call rxp_player_clear() memory will leak.

static void on_event(rxp_player* p, int event) {

 if (event == RXP_DEC_EVENT_AUDIO_INFO) {
 printf("+ Received RXP_DEC_EVENT_AUDIO_INFO event.\n");
 }
 else if (event == RXP_PLAYER_EVENT_PLAY) {
 printf("+ Received RXP_PLAYER_EVENT_PLAY event.\n");
 if (p->nchannels > 0) {
 start_audio();
 }
 }
 else if (event == RXP_PLAYER_EVENT_RESET) {
 printf("+ Received RXP_PLAYER_EVENT_RESET event.\n");

 if (rxp_player_clear(p) < 0) {
 printf("+ Failed clearing the player.\n");
 }

 /* check if this is a repeated call to start the audio stream */
 if (audio_ctx) {
 cubeb_stream_stop(audio_stream);
 cubeb_stream_destroy(audio_stream);
 cubeb_destroy(audio_ctx);
 audio_ctx = NULL;
 audio_stream = NULL;
 printf("+ Cleaned up the audio stream.\n");
 }
 }
}

 Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	rxp_player 0.0.1 documentation

API Reference

	
rxp_player_init(rxp_player* player)

	Initialize the player and all it’s members. Internally this will create a queue
for the video plackets, sets up the ringbuffer for audio to default values (won’t
allocate any bytes for the ringbuffer here), initializes the decoder, scheduler
clock etc.. This must be called before you make any other call on the rxp_player,
and everytime where you called rxp_player_clear().

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_clear(rxp_player* player)

	This function clears all used memory of the rxp_player. This function will
will deallocate the packet queue, deallocate the scheduler, decoder, clock
etc.. After calling rxp_player_clear() you can call rxp_player_init()
again if you want to reload or replay the file.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_open(rxp_player* player, char* file)

	This will open the given .ogg file. Make sure that you’ve called rxp_player_init()
before calling this function. Also, when you want to re-open the same file after it has
been played completely and you already called rxp_player_clear() to free internally
used memory, you need to call rxp_player_init() before calling this function again.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

// somewhere globally
rxp_player player;

// opening a file
{
 if (rxp_player_init(&player) < 0) {
 exit(1);
 }

 if (rxp_player_open(&player, "bunny.ogg") < 0) {
 exit(1);
 }

 if (rxp_player_play(&player) < 0) {
 exit(1);
 }

 // set callbacks
 player.on_event = on_event
 player.on_video_frame = on_video_frame
}

	
rxp_player_play(rxp_player* player)

	Start playing the opened file. Make sure that you’ve called rxp_player_init(),
rxp_player_open() first.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_update(rxp_player* player)

	Make sure to call this function as often as possible as it will check if you need
to display a new video frame. And it will make sure that the internally used
scheduler will be updated as well so it will continue decoding as needed.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_pause(rxp_player* player)

	Pause the playback. This will change the state of the player and the
rxp_player_update() will not handle any frames/timings until we continue
playing again. To continue playback, call rxp_player_play() again.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_stop(rxp_player* player)

	Stop the currently being played player. This will stop everything completely
and you’ll need to re-initialize the player again if you want to start playing
again. This will trigger the RXP_PLAYER_EVENT_RESET from where you call
rxp_player_clear() as described in the programmers guide.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 on success, < 0 on error.

	
rxp_player_is_playing(rxp_player* player)

	Check if the video player is playing.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 when the player is playing, else 1, < 0 on error.

	
rxp_player_is_paused(rxp_player* player)

	Check if the video player is paused.

	Parameters:	rxp_player* – Pointer to the rxp_player

	Returns:	0 when the player is paused, else 1, < 0 on error.

 Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	rxp_player 0.0.1 documentation

Index

 R

R

 	

 	rxp_player_clear() (built-in function)

 	rxp_player_init() (built-in function)

 	rxp_player_is_paused() (built-in function)

 	rxp_player_is_playing() (built-in function)

 	rxp_player_open() (built-in function)

 	

 	rxp_player_pause() (built-in function)

 	rxp_player_play() (built-in function)

 	rxp_player_stop() (built-in function)

 	rxp_player_update() (built-in function)

 Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		rxp_player 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, roxlu.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

